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Corrections Série 4

Exercice 1. 1. Le groupe S2 ne possede que l’identite et la permutation qui
echange 1 et 2, on peut les representer respectivement par(

1 2
1 2

)
et

(
1 2
2 1

)
Et ce groupe est commutatif car(

1 2
1 2

)
◦
(
1 2
2 1

)
=

(
1 2
2 1

)
=

(
1 2
2 1

)
◦
(
1 2
1 2

)
2. On peut representer les elements de S3 par

S3 =

{(
1 2 3
1 2 3

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
3 2 1

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)}
Et ce groupe n’est pas commutatif car(
1 2 3
2 1 3

)
◦
(
1 2 3
2 3 1

)
=

(
1 2 3
1 3 2

)
̸=

(
1 2 3
3 2 1

)
=

(
1 2 3
2 3 1

)
◦
(
1 2 3
2 1 3

)
3. On calcule

τ ◦ θ =
(
1 2 3 4
4 1 3 2

)
◦
(
1 2 3 4
1 4 3 2

)
=

(
1 2 3 4
4 2 3 1

)

θ ◦ τ =

(
1 2 3 4
1 4 3 2

)
◦
(
1 2 3 4
4 1 3 2

)
=

(
1 2 3 4
2 1 3 4

)
θ2 =

(
1 2 3 4
4 1 3 2

)
◦
(
1 2 3 4
4 1 3 2

)
=

(
1 2 3 4
2 4 3 1

)
θ3 =

(
1 2 3 4
1 2 3 4

)
On remarque aussi que

τ 2 =

(
1 2 3 4
1 2 3 4

)



Ainsi

θn =



(
1 2 3 4
4 1 3 2

)
if n = 3k + 1, k ∈ Z(

1 2 3 4
2 4 3 1

)
if n = 3k + 2, k ∈ Z(

1 2 3 4
1 2 3 4

)
if n = 3k, k ∈ Z

Et

τn =


(
1 2 3 4
1 4 3 2

)
if n = 2k + 1, k ∈ Z(

1 2 3 4
1 2 3 4

)
if n = 2k, k ∈ Z

4. Les elements de S4,3 sont donnes par

S4,3 =

{(
1 2 3 4
1 2 3 4

)
,

(
1 2 3 4
2 1 3 4

)
,

(
1 2 3 4
4 2 3 1

)
,(

1 2 3 4
1 4 3 2

)
,

(
1 2 3 4
2 4 3 1

)
,

(
1 2 3 4
4 1 3 2

)}
Et on remarque que

S4,3 =
{
Id, τ, θ, θ2, τ ◦ θ, θ ◦ τ

}
Ainsi si on montre que S4,3 est un sous-groupe de S4, alors c’est le groupe
engendre par θ et τ . Montrons alors que c’est un sous-groupe, il faut verifier les
3 points de la definition d’un sous groupe

• On a que Id ∈ S4,3.

• Soient σ, σ′ ∈ S4,3, on a alors σ(3) = σ′(3) = 3, ainsi σ ◦ σ′(3) = σ(3) = 3,
donc σ ◦ σ′ ∈ S4,3.

• Soit σ ∈ S4,3, on a que σ(3) = 3, ainsi σ−1(3) = σ−1 ◦ σ(3) = Id(3) = 3,
donc σ−1 ∈ S4,3.

Donc S4,3 est un sous-groupe de S4.

Exercice 2. On doit verifier les 3 points de la definition d’un sous groupe

• On a par definition que eG.g = g = g.eG pour tout g ∈ G, ainsi eG ∈ Z(G).

• Soient z, z′ ∈ Z(G), on a alors z.z′.g = z.g.z′ = g.z.z′ pour tout g ∈ G, ainsi
z.z′ ∈ Z(G).

• Soit z ∈ Z(G), on a alors pour tout g ∈ G que z.g = g.z, en multipliant par z−1

a gauche on obtient g = z−1.g.z, et en multipliant par z−1 a droite on obtient
g.z−1 = z−1.g, ainsi z−1 ∈ Z(G).



Donc Z(G) est un sous-groupe de G.

Exercice 3. De nouveau, on doit verifier les 3 points de la definition d’un sous groupe

• On a que Id(x0) = x0 donc Id ∈ SX,x0 .

• Soient σ, σ′ ∈ SX,x0 , on a alors σ(x0) = σ′(x0) = x0, ainsi σ ◦ σ′(x0) = σ(x0) =
x0, donc σ ◦ σ′ ∈ SX,x0 .

• Soit σ ∈ SX,x0 , on a que σ(x0) = x0, ainsi σ
−1(x0) = σ−1 ◦σ(x0) = Id(x0) = x0,

donc σ−1 ∈ SX,x0 .

Donc SX,x0 est un sous-groupe de SX .

Exercice 4. Par definition du sous-groupe engendre par un sous-ensemble, il est clair
que pour C ⊂ D ⊂ G, on a ⟨C⟩ ⊂ ⟨D⟩. Ainsi on a que ⟨A⟩ ⊂ ⟨⟨B⟩⟩. Mais puisque
⟨B⟩ est un groupe, on a que ⟨⟨B⟩⟩ = ⟨B⟩. Donc

⟨A⟩ = G ⊂ ⟨B⟩ ⊂ G

Et ainsi
⟨B⟩ = G

Exercice 5. 1. On a que 3 − 2 = 1 ∈ ⟨2, 3⟩, et de plus il est clair que ⟨1⟩ = Z,
donc grace a l’exercice 4 on en deduit que ⟨2, 3⟩ = Z.

2. De la meme maniere, 73− 24.3 = 73− 72 = 1 ∈ ⟨3, 73⟩, donc grace a l’exercice
4 on en deduit que ⟨3, 73⟩ = Z

3. Tout d’abord, soit α ∈ ⟨m,n⟩, on peut l’ecrire sous la forme α = xm+ yn avec
x, y ∈ Z. Par definition pgcd(m,n) divise m et n, donc il divise α et ainsi ⟨m,n⟩
est un sous-groupe de pgcd(m,n).Z. De plus par le theoreme de Bezout il existe
x, y ∈ Z tels que xm + yn = pgcd(m,n) ∈ ⟨m,n⟩. Ainsi en utilisant l’exercice
4 avec G = pgcd(m,n).Z, A = {pgcd(m,n)} et B = {m,n} on obtient que
⟨m,n⟩ = pgcd(m,n).Z.

Exercice 6. Etendre la notation de l’exercice aux cas suivants : si n = 0 on pose
n.(x, y) = (0, 0), si n < 0 on pose n.(x, y) = (−n).(−x,−y) = (−x,−y) + · · · +
(−x,−y) pour |n|-fois.
1. Avec la notation de l’exercise on a :

(n,m) = n.(1, 0) +m.(0, 1).

Dans tous les cas, c’est un element de ⟨{(1, 0), (0, 1)}⟩. Et alors Z2 = ⟨{(1, 0), (0, 1)}⟩.



2. Pour x = 0 = y on a, comme φ est un morphisme des groupes, que φ((0, 0)) =
1 = h01h

0
2. Par induction on peut montrer que pour des entiers positifs x, y on

a φ(x.(1, 0)) = φ((1, 0))x = hx1 et φ(y.(0, 1)) = hy2. Pour un entier negatif x
(resp. y), comme x.(1, 0) (resp. y.(0, 1)) est l’inverse de (−x, 0) (resp. ((0,−y))
on a φ(x.(1, 0)) = φ(−x, 0))−1 = (h−x

1 )−1 = hx1 (resp. φ(y.(0, 1)) = hy2). En
conclusion

φ(x, y) = φ(x.(1, 0) + y.(0, 1)) = φ(x.(1, 0)) ⋆ φ(y.(0, 1)) = hx1 ⋆ h
y
2.

3. On veut montrer que (1, 0) et (0, 1) sont contenus dans Z.(a, b) + Z.(c, d), i.e.
on doit trouver n1,m1, n2,m2 ∈ Z t.q.

m1(a, b) + n1(c, d) = (1, 0), m2(a, b) + n2(c, d) = (0, 1).

Si ad− bc = 1 on a que m1 = d, n1 = −b et m2 = −c, n2 = a est une solutione.
Si ad − bc = −1 en peut choisir m1 = −d, n1 = b et m2 = c, n2 = −a. Dans
tous le cas on a que (1, 0), (0, 1) ∈ {{(a, b), (c, d)}}. Nous pouvons maintenant
utiliser l’exercice 4 et le point (1) pour conclure.

4. Premierement, observons que (1, 0) ∧ (0, 1) = 1. Montrons que 1 ̸∈ H ∧ H.
Cela nous permettra de conclure, parce que l’image de H × H par l’appli-
cation ∧ ne contient pas 1, donc H ne peut pas etre egal a Z2, parce que
l’image de Z2 × Z2 par ∧ le contient. Prenons deux elements quelconques
n1.(a, b)+m1.(c, d), n2.(a, b)+m2.(c, d) ∈ H et calculons (n1.(a, b)+m1.(c, d))∧
(n2.(a, b) + m2.(c, d)) = (n1a + m1c, n1b + m1d) ∧ (n2a + m2c, n2b + m2d) =
(n1a+m1c)(n2b+m2d)−(n1b+m1d)(n2a+m2c) = n1n2ab+m1m2cd+n1m2ad+
m1n2bc + −n1n2ab −m1m2cd − n1m2bc − n2m1ad = (ad − bc)(n1m2 −m1n2).
Clairement, ceci est divisible par ad− bc et comme ad− bc ̸= 1, ce resultat ne
peut jamais etre egal a 1, ce qu’il fallait demontrer.

Exercice 7. 1. Soit K = {a ∈ G : φ(a) = ψ(a)}. Montrons que K est un sous-
groupe de G en utilisant le critere de sous-groupe : soit a, b ∈ K et montrons
que ab−1 ∈ K. On a φ(ab−1) = φ(a)φ(b−1) = φ(a)φ(b)−1 = ψ(a)ψ(b)−1 =
ψ(a)ψ(b−1) = ψ(ab−1), donc on a bien ab−1 ∈ K. Par hypothese, A ⊂ K, mais
< A >= G et donc on conclut par l’exercice 4 que K = G, ce qu’il fallait
demontrer.

Exercice 8.

1. Pour h, k ∈ G quelconques, on a Adg(hk) = ghkg−1 = gheGkg
−1 = gh(g−1g)kg−1 =

(ghg−1)(gkg−1) =Adg(h)Adg(k).



2. On observe que Adg◦Adg−1(h) = h, quelque soit h ∈ G. De maniere similaire,
on a Adg−1◦Adg(h) = h, quelque soit h ∈ G. On a donc que Adg◦Adg−1 = IdG
et Adg−1◦Adg = IdG, ce qui nous permet de deduire que Adg est surjectif et
injectif, respectivement. Adg est donc une bijection.

Exercice 9. 1. On suppose que G est commutatif. Soit g, h ∈ G. Alors :

[g, h] = g · h · g−1 · h−1 = g · g−1 · h · h−1 = eG · eG = eG

donc D(G) =< eG >= {eG}.
2. Soit k, g, h ∈ G quelconques. Alors :

Adk([g, h]) = k · [g, h] · k−1 = k · g · h · g−1 · h−1 · k−1 =

= k · g · k−1 · k · h · k−1 · k · g−1 · k−1 · k · h−1 · k−1 =

= (k · g · k−1) · (k · h · k−1) · (k · g−1 · k−1) · (k · h−1 · k−1) =

= Adk(g) · Adk(h) · Adk(g)−1 · Adk(h)−1 = [Adk(g), Adk(h)]

ou on a utilise que Adk(g
−1) = Adk(g)

−1, puisque Adk est un homomorphisme
de groupes.

3. Soit k, g, h ∈ G quelconques. Il s’agit de montrer que Adk(D(G)) = D(G).
Par le 2), on sait que Adk([g, h]) = [Adk(g), Adk(h)]. Soit d ∈ D(G), tel que
d = [g1, h1] · · · · · [gn, hn] pour un n ∈ N, n ⩾ 1, gi, hi ∈ G ∀i ∈ 1, ..., n.
Alors Adk([d]) = Adk([g1, h1]) · · · · · Adk[gn, hn] = [Adk(g1), Adk(h1)] · · · · ·
[Adk(gn), Adk(hn)] ∈ D(G) donc Adk(D(G)) ⊆ D(G).

D’un autre cote, on a

[g, h] = (Adk ◦ Adk−1)[g, h] = Adk

(
[Adk−1(g),Adk−1(h)]

)
∈ Adk

(
D(G)

)
.

Donc
{[g, h] : g, h ∈ G} ⊂ Adk

(
D(G)

)
.

En utilisant la minimalite du sous-groupe engendre par un sous-ensemble, on
deduit D(G) ⊆ Adk

(
D(G)

)
, ce qui nous permet de conclure.

4. Il s’agit de montrer que D(G) ⊆ ker(φ). Soit g, h ∈ G quelconques. On souhaite
montrer que φ(g.h.g−1.h−1) = eZ . Utilisant que Z est commutatif, on obtient

φ(g.h.g−1.h−1) = φ(g).φ(h).φ(g)−1.φ(h)−1

= φ(g).φ(g)−1.φ(h).φ(h)−1 = eZ .

Donc on a montre que

{[g, h] : g, h ∈ G} ⊂ ker(φ).

Comme ker(φ) est un sous-groupe, la minimalite du groupe engendre par un
sous-ensemble implique que D(G) ⊆ ker(φ).


