EPFL Automne 2024
Algebre Lineaire Avancee, MATH-110

Corrections Série 4

Exercice 1. 1. Le groupe G5 ne possede que l'identite et la permutation qui
echange 1 et 2, on peut les representer respectivement par

b3 G

Et ce groupe est commutatif car

(196G 6Y0)

2. On peut representer les elements de &3 par

6—123 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
T\ 2 3)'\213)°\3 2 1)'\132)'\231)°\31 2

Et ce groupe n’est pas commutatif car

123\ (123 (123 123\ (1 23\ (123
(213)"(231)—(132)7&(321)‘(231>°<213)

3. On calcule

co_ (1234 (1234 (1234
V=141 3 2 1432/ \4231
o (1234 (1234)_ (1234
T=\1 4 3 2 4132/ \21 34
g (123 4) (1234)_ (1234
“\41 3 2 4132 \24 31

g (1234

12 3 4

On remarque aussi que
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4. Les elements de &4 3 sont donnes par
1 2 3 4 1
64’3:{<1 2 3 4)’(2
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Et on remarque que
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Sz = {Id,7,0,6>°, 700,007}

Ainsi si on montre que G453 est un sous-groupe de &y, alors c’est le groupe
engendre par ¢ et 7. Montrons alors que c¢’est un sous-groupe, il faut verifier les
3 points de la definition d'un sous groupe
e Onaquelde Gygs.
e Soient 0,0’ € G435, on a alors 0(3) = ¢'(3) = 3, ainsi 0 00’(3) = 0(3) = 3,
donc o oo’ € Gy3.
e Soit 0 € Gy3, on a que 0(3) = 3, ainsi 071(3) = o7 0 0(3) = Id(3) = 3,
donc 07! € Gy3.

Donc G435 est un sous-groupe de Sy.

Exercice 2. On doit verifier les 3 points de la definition d'un sous groupe
e On a par definition que eg.g = g = g.e¢ pour tout g € G, ainsi eq € Z(G).
e Soient z,2' € Z(G), on a alors z.2'.g = z.9.2' = g.z.2/ pour tout g € G, ainsi
z.2" € Z(G).
e Soit z € Z(G), on a alors pour tout g € G que z.g = g.z, en multipliant par z~

a gauche on obtient g = 27 !.g.z, et en multipliant par z~! a droite on obtient
gzt =2z71.g, ainsi 27! € Z(G).
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Donc Z(G) est un sous-groupe de G.

Exercice 3. De nouveau, on doit verifier les 3 points de la definition d’un sous groupe
e On a que [d(xg) = xo donc Id € Sx ,,.
e Soient 0,0’ € &x 4, on a alors o(zg) = o' (xg) = x¢, ainsi 0 o o’ (x9) = o(z9) =
xg, donc o oo’ € Gx 4.
e Soit 0 € Gx,, 0n a que o(x) = Ty, ainsi 0~ (z9) = oo (xy) = Id(xo) = w0,
donc 07! € Gx 4.

Donc &x 4, est un sous-groupe de Sx.

Exercice 4. Par definition du sous-groupe engendre par un sous-ensemble, il est clair
que pour C C D C G, on a (C) C (D). Ainsi on a que (A) C ((B)). Mais puisque
(B) est un groupe, on a que ((B)) = (B). Donc

(A)=G C(B) Cd

Et ainsi
(B)=G

Exercice 5. 1. Onaque3—2=1 € (2,3), et de plus il est clair que (1) = Z,

donc grace a l’exercice 4 on en deduit que (2,3) = Z.

2. De la meme maniere, 73 —24.3 =73 — 72 =1 € (3,73), donc grace a l’exercice
4 on en deduit que (3,73) =Z

3. Tout d’abord, soit a € (m,n), on peut l'ecrire sous la forme a = xm + yn avec
x,y € Z. Par definition pged(m,n) divise m et n, donc il divise « et ainsi (m, n)
est un sous-groupe de pged(m, n).Z. De plus par le theoreme de Bezout il existe
x,y € 7Z tels que xm + yn = pged(m,n) € (m,n). Ainsi en utilisant 'exercice
4 avec G = pgcd(m,n).Z, A = {pgcd(m,n)} et B = {m,n} on obtient que
(m,n) = pged(m,n).Z.

Exercice 6. Etendre la notation de l’exercice aux cas suivants : si n = 0 on pose
n.(z,y) = (0,0), si n < 0 on pose n.(z,y) = (—n).(—z,—y) = (—x,—y) + -+
(—x, —y) pour |n|-fois.

1. Avec la notation de ’exercise on a :
(n,m) =n.(1,0) + m.(0,1).

Dans tous les cas, ¢’est un element de ({(1,0), (0,1)}). Et alors Z* = ({(1,0), (0,1)}).



2.

Pour z = 0 = y on a, comme ¢ est un morphisme des groupes, que ¢((0,0)) =
1 = h9RY. Par induction on peut montrer que pour des entiers positifs x,y on
a o(x.(1,0)) = »((1,0))* = hi et p(y.(0,1)) = hY. Pour un entier negatif x
(resp. y), comme x.(1,0) (resp. y.(0,1)) est l'inverse de (—x,0) (resp. ((0, —y))
on a ¢(r.(1,0)) = p(—2,0)7 = (k") = hf (resp. p(y.(0,1)) = hL). Bn
conclusion

o(r,y) = ¢(@.(1,0) +y.(0,1)) = @(z.(1,0)) * ¢(y.(0,1)) = hi % hj.

On veut montrer que (1,0) et (0,1) sont contenus dans Z.(a,b) + Z.(c,d), i.e.
on doit trouver ny, my,ng, my € Z t.q.

mi(a,b) + ni(c,d) = (1,0), ma(a,b) + na(c,d) = (0, 1).

Siad —bc=1on aque m =d,n; = —bet my=—c,ny = a est une solutione.
Si ad — bc = —1 en peut choisir m; = —d,ny = b et my = ¢,ny = —a. Dans
tous le cas on a que (1,0),(0,1) € {{(a,b), (c,d)}}. Nous pouvons maintenant
utiliser I’exercice 4 et le point (1) pour conclure.

Premierement, observons que (1,0) A (0,1) = 1. Montrons que 1 ¢ H A H.
Cela nous permettra de conclure, parce que l'image de H x H par 'appli-
cation A ne contient pas 1, donc H ne peut pas etre egal a Z2, parce que
I'image de Z% x Z* par A le contient. Prenons deux elements quelconques
ni.(a,b)+my.(c,d), ne.(a,b) +mo.(c,d) € H et calculons (ny.(a,b)+mi.(c,d)) A
(n2.(a,b) + ma.(c,d)) = (nia + myc,nb + myd) A (naa + mac, nob + mad) =
(n1a+myc)(neb+maod) — (n1b+myd)(noa+msac) = ningab+mymocd+nymoad—+
mingbe + —nyngab — mymocd — nymaebe — nomyad = (ad — be)(nyme — miny).
Clairement, ceci est divisible par ad — bc et comme ad — bc # 1, ce resultat ne
peut jamais etre egal a 1, ce qu’il fallait demontrer.

Exercice 7. 1. Soit K = {a € G : ¢(a) = ¢(a)}. Montrons que K est un sous-

groupe de G en utilisant le critere de sous-groupe : soit a,b € K et montrons
que ab™! € K. On a g(ab™") = ¢(a)p(b™!) = @(a)p(b)™ = ¥(a)d(b)™! =
P(a)(b™) = ¢(ab™t), donc on a bien ab™' € K. Par hypothese, A C K, mais
< A >= G et donc on conclut par lexercice 4 que K = G, ce qu’il fallait
demontrer.

Exercice 8.

1.

Pour h, k € G quelconques, on a Ad,(hk) = ghkg™' = ghegkg™' = gh(g'g)kg™*
(ghg™")(gkg™") =Adg(h)Ady(k).



2. On observe que AdgoAd,-:(h) = h, quelque soit h € G. De maniere similaire,
on a Ad,-10Ad,(h) = h, quelque soit h € G. On a donc que AdgoAd,—1 = Idg
et Adg-10Ad, = Idg, ce qui nous permet de deduire que Ad, est surjectif et
injectif, respectivement. Ad, est donc une bijection.

Exercice 9. 1. On suppose que G est commutatif. Soit g,h € G. Alors :
lg,h]l=g-h-g - hl=g-g7' h-h ' =eq-ec=eq
donc D(G) =< eq >= {eq}.
2. Soit k,g,h € G quelconques. Alors :
Adi([g,h]) =k - [g.h] - k" =k-g-h-g7' BT kT =
=k-g- kY k-hk kg kT ERT R =
=(k-g- kY -(k-h- kY (kg kY (E-AL Y =
= Adi(g) - Ady(h) - Ady.(9)™" - Ad(h)™" = [Ady(g), Ady(h)]

ou on a utilise que Ady(g~') = Ady(g)~t, puisque Ady est un homomorphisme
de groupes.

3. Soit k,g,h € G quelconques. Il s’agit de montrer que Ady(D(G)) = D(G).
Par le 2), on sait que Ady([g,h]) = [Adk(g), Adk(h)]. Soit d € D(G), tel que
d = [gi,h1] - - - [gn,hp] pour un n € Ny n > 1,9;,h; € G Vi € 1,...,n.
Alors Ady([d]) = Adg([g1,h1]) - -+« Adglgn, hn] = [Adk(g1), Adk(hq)] - -+ - -
[Adi(gn), Ady(h,)] € D(G) done Ady(D(G)) € D(G).

D’un autre cote, on a
9, 1] = (Ady, 0 Ady-1)[g, k] = Ady([Ady-1(9), Ad-1(R)]) € Ady,(D(G)).
Donc
{lg,h] : g,h € G} C Ady,(D(G)).
En utilisant la minimalite du sous-groupe engendre par un sous-ensemble; on
deduit D(G) C Ady(D(G)), ce qui nous permet de conclure.

4. Tls’agit de montrer que D(G) C ker(p). Soit g, h € G quelconques. On souhaite
montrer que p(g.h.g”t.h™t) = ez. Utilisant que Z est commutatif, on obtient

o(g.h.g " h7") = p(g).0(h)p(g) " (h)™"

= ¢(9)-p(9) " p(h).p(h)™" = ez
Donc on a montre que

{lg,h] : g,h € G} C ker(y).

Comme ker(y) est un sous-groupe, la minimalite du groupe engendre par un
sous-ensemble implique que D(G) C ker(yp).



